Иллюстрированный самоучитель по Maple


Основные функции пакета DEtools


Ввиду обилия функций пакета DEtools дать их полное описание в данной книге не представляется возможным. Поэтому выборочно рассмотрим наиболее важные функции этого пакета. Функция:

autonomous(des.vars,ivar)

тестирует дифференциальное уравнение (или систему) des. Ее параметрами помимо des являются независимая переменная ivar и зависимая переменная dvar. Следующие примеры поясняют применение этой функции:

> automou(sin(z(t)-z(t)^2)*(D@@4)(z)(t)-cos(z(t))-5,z.t);

true

> DE:=diff(x(s),s)-x(s)*cos(arctan(x(s)))=arctan(s): 

> autonomous(DE.{x},s);

false

Функция Dchangevar используется для обеспечения замен (подстановок) в дифференциальных уравнениях:

Dchangevar(trans,deqns, c_tvar, rMvar)

Dchangevar(tranl, tran2, .... tranN, deqns, c_ivar, n_ivar)

В первом случае trans — список или множество уравнений, которые подставляются в дифференциальное уравнение, список или множество дифференциальных уравнений deqns. При этом c_ivar — имя текущей переменной, n_ivar — имя новой переменной (его задавать необязательно). Во второй форме для подстановки используются уравнения tranl, tran2, .... Ниже представлены примеры применения функции Dchangevar:

Основные функции пакета DEtools

Основные функции пакета DEtools

Следует отметить, что подстановки являются мощным средством решения дифференциальных уравнений. Нередки случаи, когда дифференциальное уравнение не решается без их применения. Дополнительные примеры использования подстановок можно найти в справочной базе данных системы Maple 7.

Функция нормализации ОДУ DEnormal синтаксически записывается в виде:

DEnormal(des,ivar,dvar)

где des — система дифференциальных уравнений, 1var — независимая переменная и dvar — зависимая переменная. Применение этой функции поясняют следующие примеры:

Основные функции пакета DEtools

Функция convertAlg(des,dvar) возвращает список коэффициентов формы системы дифференциальных уравнений des с зависимыми переменными dvar. Это поясняют следующие примеры:

Основные функции пакета DEtools

Для изменения переменных в системах дифференциальных уравнений используется функция convertsys:

convertsys(deqns, inits, vars, ivar, yvec, ypvec)


Здесь deqns — одно дифференциальное уравнение или список (множество), представляющие систему дифференциальных уравнений первого порядка, inits — множество или список начальных условий, vans — зависимые переменные, ivar — независимые переменные, yvec — вектор решений и ypvec — вектор производных. Функция:

indicialeq(des.ivar,alpha.dvar)

обеспечивает полиномиальное представление для линейного однородного дифференциального уравнения второго порядка des. Параметр alpha намечает точку сингулярности.

Основные функции пакета DEtools
Функция:

reduceOrder(des.dvar,partsol, solutionForm)

обеспечивает понижение порядка дифференциального уравнения des (или системы уравнений, представленных списком или множеством) при зависимых переменных dvar, частном решении partsol (или списке частных решений) и флаге solutionForm, показывающем, что решение происходит явным методом (explicitly). Для демонстрации действия этой функции воспользуемся примером из ее справочной страницы:

Основные функции пакета DEtools
Функция:

regularsp(des,ivar,dvar)

вычисляет регулярные особые (сингулярные) точки для дифференциального уравнения второго порядка или системы дифференциальных уравнений des. Следующий пример поясняет применение данной функции:

> coefs := [21*(х^2 - х + 1),0,100*х^2*(х-1)^2]:

 > regularsp(coefs. х);

[0,1]

Еще две функции пакета DEtools:

translate(des,ivar.pt,dvar) 

untranslate(des,ivar,pt,dvar)

выполняют особую операцию трансляции дифференциального уравнения (или списка дифференциальных уравнений) из центрированного относительно 0 в центрированное относительно 1 и наоборот. С деталями этого специфического процесса заинтересованный читатель может познакомиться в справочной базе данных. И еще одна полезная функция пакета: 

varparam(sols.v.ivar) 

находит общее решение дифференциального уравнения (или системы уравнений) sols методом вариации параметров. Параметр v задает правую часть уравнения; если он равен 0, ищется только частичное решение:

Основные функции пакета DEtools
Более подробную информацию об этих функциях читатель найдет в их справочных страницах, а также в информационном документе detdols.mws содержащем систематизированное описание пакета DEtools с многочисленными примерами его применения.

Основные функции пакета DEtools
Основные функции пакета DEtools
Основные функции пакета DEtools


Содержание раздела